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Abstract. The motion on the sphereS2 in potentialV = (x1x2x3)
−2/3 is considered. The

Lax representation and the linearization procedure for this two-dimensional integrable system are
discussed.

1. Description of the model

The system under consideration is a special case of the following mechanical system in the
nine-dimensional spaceR9:

F ∗(t)
d2F(t)

dt2
+ | detF(t)|1−γG = 0. (1)

HereF(t) andG are 3× 3 matrices,F ∗ denotes the transpose matrix andγ is a polytropic
index. TheFjk components of the matrixF are coordinates on the configuration spaceR9.
These equations of motion have been studied many authors, see [2,6,8,12].

According to [12], we shall only consider symmetric constant matricesG = G∗. In
this case, by using the canonical transformation of variablesF ′ = UFU ∗, we can reduce
the constant matrixG to the diagonal matrix with the following diagonal elements:±1 or 0.
Moreover, from a physical point of view we can putG = I without loss of generality [12].

The Newton equations (1) arise in the solution of the hydrodynamical equations
representing the dynamics of a cloud of compressible gas expanding freely in an otherwise
empty space. This model has a rich history associated with well known researchers such as
Dirichlet, Dedekind and Riemann. For an extensive discussion of the model we refer the reader
to [6], a book which should be viewed as a general reference guide to the subject.

At G = G∗ the invariance of the problem under the rotation and internal motion of the
gas leads to conservation of the angular momentum and the vorticity operator:

J = F(t)Ḟ ∗(t)− Ḟ (t)F ∗(t) K = F ∗(t)Ḟ (t)− Ḟ ∗(t)F (t).
BothJ andK are antisymmetric matrices with three independent components. Thus, equations
(1) possess an enlarged symmetry groupSO(4) ' SO(3) × SO(3). There is also a discrete
symmetry, which allows the vorticity and the angular momentum to be interchanged. This
discrete symmetry is identical to the duality principle of Dedekind [8].

For the perfect monatomic gas, atγ = 5
3 the system of equations (1) possesses one more

integral of motion [2]:

r2 = tr(F ∗(t)F (t)) at γ = 5
3. (2)
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The qualitative behaviour of solutions at the different values of the adiabatic indexγ and some
partial cases of motion are discussed in [6].

It is easy to separate the diagonal and non-diagonal components of equations (1) [6,8,12].
The non-diagonal components give six kinematical equations only involving the inertial
properties of the gas cloud and not the pressure force. The diagonal components give three
dynamical equations determining the rate of expansion of the gas cloud under the influence of
the pressure force.

Below, atγ = 5
3, we consider a free expansion of an ellipsoidal gas cloud with fixed

orientation, having zero angular momentum and zero vorticityK = J = 0. In this case
matrixF(t) is diagonal for allt :

F(t) = diag(x1, x2, x3)(t)

and the constant matrixG = I is equal to unity. The corresponding three equations of motion
are given by

x1ẍ1 = x2ẍ2 = x3ẍ3 = const

(x1x2x3)2/3
at γ = 5

3. (3)

The additional integral of motion (2) [2] is equal to the radius of the spherer2 = ∑ x2
k . By

using this integral our system onR3 may be reduced to the system on the sphereS2. At γ = 5
3

the third independent integral of motion was derivd in [9].
The reduced system has a configuration space diffeomorphic to the Euclidean motion

groupE(3) = SO(3) × R3 [3]. It allows one to identify the phase space of this system on
T ∗S2 with the cotangent bundleT ∗E(3). The kinetic energy is a left-invariant Riemannian
metric onE(3). It is determined by some quadratic form on the dual spacee∗(3) of the Lie
algebrae(3) [3,13].

By using the Killing form the dual spacee∗(3) may be identified with algebrae(3) =
so(3) ⊕ R3, the semi-direct sum ofso(3) and the Abelian spaceR3. Let two vectors
J ∈ so(3) ' R3 andx ∈ R3 be coordinates in the dual spacee∗(3) equipped with natural
Lie–Poisson brackets

{Ji, Jj } = εijkJk {Ji, xj } = εijkxk
{xi, xj } = 0 i, j, k = 1, 2, 3.

(4)

Hereεijk is the standard totally skew-symmetric tensor. The generic coadjoint orbits ofE(3)
in e∗(3) are four-dimensional symplectic leaves specified by the two Casimir elements

C1 = (x, x) = xixi C2 = (J, x) = Jixi . (5)

Here(x, y) means the inner product inR3. Thus, the dual spacee∗(3) decomposes into the
coadjoint orbits

Oc1,c2 = {{J, x} ∈ R6 : C1 = c1,C2 = c2} (6)

which are invariant with respect to the usual Euler–Poisson equations ine∗(3) [3,13].
Let us introduce a complex analogue of the Lie algebrae(3), as a semi-direct sum of

so(3,C) and the complex spaceC3. This algebrae(3,C) = so(3,C)⊕ C3 is equipped with
the same Lie–Poisson brackets (4) and Casimir operators (5). In contrast to the usuale(3)
algebra, it allows us to consider non-trivial representations at the zero valuec1 = 0 of the first
Casimir operatorC1.

The conditionc1 = 0 has no obvious physical or geometric meaning. Of course, we
cannot consider a real sphere of zero radius, but from a mathematical point of viewc1 is an
arbitrary value of the Casimir element. Note, that ‘non-physical’ representations of the algebra
sl(2) with the zero-spins = 0 are also useful in physics [11,15].
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Proposition 1. At the zero valuec1 = 0 of the first Casimir operatorC1 (5) the following
transformation inso∗(3,C) ⊂ e∗(3,C):

J → J̃ = J +
ia

(x1x2x3)1/3
x a ∈ C (7)

is an outer automorphism of the representation ofe(3,C).

By using embeddinge(3) ⊂ e(3,C) let us consider known integrable tops on this complex
algebrae∗(3,C). Applying transformation (7) one can get integrable deformations of these tops
on the one-parameter set of orbitsO1 (c1 = 0, c2 = const). Sometimes outer automorphism
(7) allows us to get much more.

As an example, let us consider a spherical top with the standard Hamilton function

H = (J̃ , J̃ ) = J̃ 2
1 + J̃ 2

2 + J̃ 2
3 (8)

and with the non-standard second integral of motion

K = J̃1J̃2J̃3 (9)

defined only on the subalgebraso(3). Of course, by substituting vector̃J (7) one gets an
integrable deformation of this symmetric top atc1 = 0. However, we can prove the following
proposition.

Proposition 2. Outer automorphism (7) maps Hamiltonian (8) of the spherical top into the
following Hamiltonian:

H =
3∑
k=1

J 2
k + 2ia

c2

(x1x2x3)1/3
− a2 c1

(x1x2x3)2/3
. (10)

The proposed deformation of the spherical top is completely integrable on both the one-
parameter sets of orbits

O1 : (c1 = 0, c2 = const) and O2 : (c1 = const, c2 = 0).

Moreover, to consider the second orbits we can return to the usual real Lie algebrae∗(3).

At c1 = 0 the second integral is the image of known integralK (9)

K = J1J2J3− a2

(
J1

x1
+
J2

x2
+
J3

x3

)
(x1x2x3)

1/3

+
2ia

(x1x2x3)1/3
(J1J2x3 + J1x2J3 + x1J2J3)− ia3. (11)

At c2 = 0 the Hamilton function (10) is in involution with the following second integral of
motion:

K = J1J2J3 + a2

(
J1

x1
+
J2

x2
+
J3

x3

)
(x1x2x3)

1/3. (12)

In contrast with (11), here we removed the imaginary terms and changed the sign before the
rest potential term. We do not know the origin of such an additional transformation at present.

In the natural variables

y = x

(x1x2x3)1/3
y1y2y3 = 1

transformation (7) becomes a shiftJ̃ = J + iay and the integrals of motion (10) and (12) are
given by

H = J 2
1 + J 2

2 + J 2
3 − a2(y2

1 + y2
2 + y2

3)

K = J1J2J3 + a2

(
J1

y1
+
J2

y2
+
J3

y3

)
.

(13)



8358 A V Tsiganov

The Euler–Poisson equations one∗(3) generated by (10) are given by

d

dt
J = 2a2

3
(y, y)y × y−1 y−1 = (y−1

1 , y−1
2 , y−1

3 )

d

dt
y = −2

3
(y, y)J × y−1 (y, y) = y2

1 + y2
2 + y2

3

(14)

wherex × y means the standard vector product inR3. Thus, we rewrite the initial very
symmetric equations of motion (3) defined on the configuration spaceR3 as the Euler–Poisson
equations (14) defined on the phase spacee∗(3).

2. Lax representation

The main purpose of this paper is to rewrite the equations of motion (14) in the Lax form

d

dt
L = [L,M]. (15)

Let us briefly recall the construction of the Lax pair for the Neumann system. The
Neumann system is an integrable system on the sphere with quadratic potential (see (13)).
Its phase space may be modelled on the dual spacee∗(3) at c2 = 0. The corresponding
Euler–Poisson equations are equal to

d

dt
J = x × z d

dt
x = −J × x z = −diag(a1, a2, a3)x (16)

whereaj are arbitrary parameters.
The Neumann system possesses the necessary number of quadratic integrals of motion.

Nevertheless, the Lax pair cannot be constructed in the framework of the algebrae(3) =
so(3) ⊕ R3. Namely, for the Neumann system and some others system, we have to use the
Cartan-type decomposition of the Lie algebragl(3,R) = so(3) + Symm(3) [13].

Let us introduce the antisymmetric matrix of angular momentumJ ∈ so(3) and the
symmetric matrix of coordinatesX ∈ Symm(3)

J ∈ so(3) ' R3 : Jij = εijkJk
X ∈ Symm(3) : Xij = xixj .

Then the Lax representations for the Neumann system are given by

L = diag(a1, a2, a3)λ + J + λ−1X M = −λ−1X . (17)

Let us present these Lax matrices explicitly:

L =
(
a1λ 0 0
0 a2λ 0
0 0 a3λ

)
+

( 0 −J3 J2

J3 0 −J1

−J2 J1 0

)
+

1

λ

(
x2

1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3

)

M = −x1x2x3

λ

 x1
x2x3

x−1
3 x−1

2

x−1
3

x2
x1x3

x−1
1

x−1
2 x−1

1
x3
x1x2

 .
Now let us turn to the deformation of the completely symmetric top (10). The Lie algebras

R3 with the vector product, andso(3) with the usual commutator may be identified by using
the Lie algebras isomorphism

x =
(
x1

x2

x3

)
∈ R3 −→ X =

( 0 x3 −x2

−x3 0 x1

x2 −x1 0

)
∈ so(3).
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In (7) the elementJ ∈ so(3) has been added with the vectorx ∈ R3. Thus, defining the outer
automorphism (7), we implicitly used this property of the three-dimensional Euclidean space.
Below we use the same property to construct the Lax representation.

The main recipe is to rearrange items in the decompositiongl(3,R) = so(3)+Symm(3).
Let us introduce a symmetric matrix of angular momentumJ ∈ Symm(3) and an
antisymmetric matrix of coordinatesX ∈ so(3)

J ∈ Symm(3) : Jij = |εijk|Jk
X ∈ so(3) ' R3 : Xij = εijkyk

where|εijk| means the absolute value ofεijk.

Proposition 3. At c2 = 0 the equations of motion (14) on the sphereS2 generated by the
Hamilton function (13) can be written in the Lax form (15) with the following matrices:

L = λI + J + aX Mij = 2a

3
|εijk|x−1

k . (18)

More explicitly, the first matrix is

L =
(
λ 0 0
0 λ 0
0 0 λ

)
+

( 0 J3 J2

J3 0 J1

J2 J1 0

)
+ a

( 0 y3 −y2

−y3 0 y1

y2 −y1 0

)
and the second matrix is given by

M = 2ac1/2
1

3
√
(y, y)

 0 y−1
3 y−1

2

y−1
3 0 y−1

1

y−1
2 y−1

1 0

 .
The spectral invariants ofL(λ) give rise to both integrals of motion in involution (13)

detL(λ) = λ3−Hλ + 2K.

The proposed Lax matrixL(λ) has a trivial dependence on the spectral parameterλ, which
is similar to the Lax matrix for the Kowalewski top derived by Perelomov [13]. Therefore, we
cannot construct a suitable spectral curve and cannot directly integrate the equations of motion.
Recall that, in [13] the Perelomov matrices were embedded into the general Lax matrices with
the spectral parameter. It forces us to consider the Lax representation (18) as a first attempt
to build an adequate Lax pair. We believe the desired Lax pair explains the peculiar geometry
and the origin of integrability of the considered motion on the sphereS2.

3. Linearization procedure

To conclude this paper we briefly discuss the results obtained in [10] within the modern
theory of linearization of the two-dimensional integrable systems [1, 4, 16]. The integration
procedure proposed in [10] has an unusual form, which is closely related to the concrete
system of equations. This procedure may be related to the work by Chaplygin [7] dealing
with the Kirchhoff equations atc2 = 0. On the other hand, the modern theory of linearization
allows us to consider different integrable systems such as the Neumann problem, the Henon–
Hailes system, the Toda lattice, the Kowalewski top, the Goryachev–Chaplygin top and many
others [1,4,16].

However, in this common but powerful method it is necessary to rewrite equations of
motion at some suitable variables. These variables have to satisfy the special conditions
[1,4,16]. As an example, to integrate the Toda lattice we have to introduce so-called Flaschka
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variables. For other systems such variables may be introduced by using the Kowalewski–
Painlev́e analysis or the algebro-geometric tools. Nevertheless, if we have introduced such
variables, the Adler and van Moerbeke methods [1, 4, 16] enable us to integrate a given
mechanical system.

The aim of this section is to introduce an analogue of the Flaschka variables for the
deformations of the spherical top. At these variables we may directly apply the Adler and
van Moerbeke methods to a given integrable system. These results will be presented in future
publications.

The three-body Toda lattice is the Hamiltonian system defined as

H = 1
2

3∑
j=1

p2
j + eq1−q2 + eq2−q3 + eq3−q1.

Here {pj , qj }3j=1 are pairs of canonical physical variables. According to [1, 4, 16], in the
Flaschka variables

z1 = eq1−q2 z2 = eq2−q3 z3 = eq3−q1 z1z2z3 = 1

z4 = −p1 z5 = −p2 z6 = −p3

the corresponding equations of motion have the following form:

d

dt
z1 = z1(z5− z4)

d

dt
z4 = z1− z3

d

dt
z2 = z2(z6− z5)

d

dt
z5 = z2 − z1

d

dt
z3 = z3(z4 − z6)

d

dt
z6 = z3− z2.

(19)

The Toda flow has the following four constants of motion:

Z1 = z1z2z3 = 1

Z2 = z4 + z5 + z6 = d1 = 0
Z3 = 1

2(z
2
4 + z2

5 + z2
6) + z1 + z2 + z3 = a1

Z4 = z4z5z6− z1z6− z2z4 − z3z5 = b1.

(20)

At d1 6= 0 the variableQ = q1 + q2 + q3 cannot be restored from variables{z}6j=1. Really,
we have to add to the{zj } variables some other variables with trivial dynamics [1]. Below
we introduce the analogue of the Flaschka variables for the integrable deformations of the
spherical top.

There is a discrete permutation group acting on the vectorsq andp simultaneously:

q 7−→ Dq p 7−→ Dp D =
( 0 1 0

0 0 1
1 0 0

)
D3 = 1. (21)

According to this point symmetry, the invariant manifold defined by (20) has a third-order
automorphism given by

(z1, z2, z3, z4, z5, z6) 7−→ (z2, z3, z1, z5, z6, z4). (22)

This automorphism simplifies the Adler and van Moerbeke analysis [1, 4], which applied to
this system, gives linearization to the Toda flow.

Recall that the Kowalewski–Painlevé analysis also enables us to integrate equations of
motion for the Goryachev–Chaplygin top [4, 16]. It is another integrable system one∗(3)
at c2 = 0. In this case we have to introduce some seven-dimensional system with the
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five constants of motion. Then this seven-dimensional system may be reduced to the Toda
system [4]. The similar relations between the Toda flow and the integrable system one∗(3)
are discussed in [14]. Now we want to compare the Toda flow with another integrable system
on e∗(3).

Let us turn to the deformation of the completely symmetric top (10). In [9], the following
transformation of the independent time variable was proposed:

t → u :
d

du
= 4

3
(y, y)

d

dt
(23)

because of the ‘weak’ Kowalewski–Painlevé criterion. In the new time variable the initial
Euler–Poisson equations (14) are

d

du
J = a2

2
y × y−1 d

du
y = −1

2
J × y−1. (24)

Namely, these equations were integrated in hyperelliptic quadratures in [10].
If we want to compare the integrable system on the sphereS2 with the Toda system, note

that equations (19) are invariant due to

zj 7−→ 1

zj
zj+3 7−→ −zj+3 j = 1, 2, 3. (25)

The first equation in (24) has a similar property due to

yj 7−→ 1

yj
Jj 7−→ −Jj j = 1, 2, 3.

Using these observations we introduce the analogues of the Flaschka variables

s1 = y−2
1 s2 = y−2

3 s3 = y−2
2 s1s2s3 = 1

s6 = y1J1 s4 = y3J3 s5 = y2J2

satisfying the following equations:

d

du
s1 = s1(s5− s4) d

du
s4 = a2

2
(s1− s3) +

s4

2
(s5− s6)

d

du
s2 = s2(s6− s5) d

du
s5 = a2

2
(s2 − s1) +

s5

2
(s6− s5)

d

du
s3 = s3(s4 − s6) d

du
s6 = a2

2
(s3− s2) +

s6

2
(s4 − s5).

(26)

The first column of equations is completely coincident with the corresponding Toda equations
(19). The second columns differ since the polynomials are at most quadratic. Thus, for
these equations we can directly apply the linearization procedure devised by Adler and van
Moerbeke [1,4]. Freedom in the definition of thesj variables may be used to make the Laurent
solutions a bit simpler.

The constants of motion for the flow (26) are given by

S1 = s1s2s3 = 1

S2 = s4 + s5 + s6 = c2 = 0
S3 = (s2

4s2 + s2
5s3 + s2

6s1)− a2(s1s2 + s1s3 + s2s3) = a1

S4 = s4s5s6 + a2(s1s6 + s2s4 + s3s5) = b1.

(27)

The three constantsS1, S2 and S4 coincide with the corresponding Toda constants. The
HamiltonianS3 is now a cubic polynomial.

As for the Toda lattice, new equations and constants of motion are invariant under
permutation (21). Thus, the invariant manifold defined by (27) possesses the third-order
automorphism (22), which simplifies the linearization procedure.
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It may, of course, be quite difficult to find variables similar to{zj } or {sj } associated with
a given mechanical system. These variables have to satisfy some special conditions [1, 16].
For instance, the corresponding equations of motion must only include polynomials which are
at most of second order, see (19), (26). However, if we can introduce such variables, the Adler
and van Moerbeke methods [1,4,16] enable us to integrate a given mechanical system.

Thus, for motion on sphere (13) one has to embed the affine invariant surface defined by
(27) into the projective space, whose closure is a principally polarized Abelian surface. It
enables one to define the system in linearizing variables. Then we have to prove that the vector
field corresponding toS4 (27) gives the highest flow with respect to the same hyperelliptic
curve of genus two. This will complete the linearization of the integrable deformation of the
spherical top. Of course, this general machinery leads to the particular results obtained in [10].

4. Conclusion

In the algebro-geometric approach due to Adler and van Moerbeke [1, 4, 16], the algebraic
curve may be constructed without any Lax pair representation. For the considered motion
on a sphere (10), by substituting the Laurent solutions into the invariants (27) one gets the
hyperelliptic curve [10]. Starting with this curve and the linearizing variables [10] the 2× 2
Lax pair may be obtained (see [16] for a review).

In this paper we tried to construct the Lax pair in the framework of the group-theoretical
approach to an integrable system [5, 13]. Applying the method of finite-band integration to
the adequate Lax matrix, we hope to get solutions, which may be simpler than the original
formulae [10], as for the Kowalewski top [5].

Further properties of the integrable deformation of the completely symmetric top, such as
action-angles variables, Poisson structures of the seven-dimensional system and the separation
of variables are under study. The results and the more detailed geometric description will be
published elsewhere.
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